Laserprojector: Unterschied zwischen den Versionen
Siro (Diskussion | Beiträge) KKeine Bearbeitungszusammenfassung |
Siro (Diskussion | Beiträge) K (removed work in progress) |
||
Zeile 1: | Zeile 1: | ||
<b>[http://das-labor.org/wiki/Laserprojector_en english version]</b> | <b>[http://das-labor.org/wiki/Laserprojector_en english version]</b> | ||
Version vom 5. Oktober 2010, 21:19 Uhr
laserprojector Release status: experimental [box doku] | |
---|---|
Description | Projektor der 2 sich drehende Spiegel zur Ablenkung eines modulierten Laserstrahls nutzt |
Author(s) | siro |
Last Version | 0.2 |
DIY Laser Projector
Idee : Mit möglichsten einfachen Mitteln ein LaserProjector bauen.
Konzept
Atmega steuert 1 schnellen Motor und einen Galvo/Schrittmotor, Keyboard, GLCD, Power-Supply.
An den Motoren sind Spiegel befestigt. Der Laserstrahl trifft auf den ersten Spiegel und wird von dort zur zweiten reflektiert. Der erste sorgt für die vertikale Ablenkung, der zweite für die horizontale. Durch Pulsung des Lasers kann ein Bild projektiert werden.
Bauteile
TODO
Übersicht
Syncronisationseinheit
Detektiert die Position des Laserstrahls
Besser ein Transimpedanzwandler, anstelle eines Spannungsteilers verwenden
Beschreibung
Die IR-LEDs leuchten auf den Spiegel, wodurch das reflektierte Licht auf die IR-Phototransistoren fällt, wird differenziert, rauschgefiltert und verstärkt. Am Ausgang des OpAmp schneidet eine Diode die negative Spannung ab. Ist diese groß genug, schaltet der FET (BSS123) durch und zieht die Output Leitung auf Masse. Am anderen Ende der Leitung muss ein Pullup-Widerstand sein, der den Strom auf unter 10mA begrenzt.
Versorgungsspannung: 3,7 bis 15 Volt (empfohlen 5 bis 12 Volt).
Berechnung des Tiefpass
Ua = -Ue * R2/R1 * 1 / SQR( 1 + (2*pi*f*R*C)^2 )
Sei 1 / SQR( 1 + (2*pi*f*R*C)^2 ) < 1/Sqr(2) für f > 3000 Hz
1 + (2*pi*f*R*C)^2 < 2
(2*pi*f*R*C)^2 < 1
(2*pi*f*R*C) < 1
RC < 1/2*pi*f
RC < 5,3*10^-5 für f > 3kHz
C = 50nF
Dateien im SVN
STATUS: gebaut, getestet
Syncsensor
Zwei kleine IR-LEDS leuchten dauerhaft auf die rotierenden Spiegel gerichtet. Sobald der reflektierte Lichtstrahl auf die IR-Phototransistoren fällt, wird ein Interrupt am Mikrokontroller ausgelöst.
STATUS: getestet
Sicherheitsboard
Das Sicherheitsboard soll mit verschiedenen Sensoren feststellen, dass sich die Spiegel bewegen, so das die Lichtleistung pro Bildpunkt gering gehalten wird. Bei einem Stopp der Spiegel muss der Laser sofort abgeschaltet werden.
Kontrollboard
An das Kontrollboard werden GLCD, PS/2 - Tastertur, H-Motor Steuerung, Stromversorgung, i2C Bus angeschlossen. Auf dem GLCD sind Messwerte zu sehen, mit der Tastertur lassen sich Variablen verändern. Der H-Motor (Epson Laser-unit) benötigt ein TTL Signal zum regulieren der Motorgeschwindigkeit. Das ATX-Netzteil dient als Stromversorgung für alle Komponenten außer dem Kontrollboard. Dieses wird durch die Standby-Stromquelle des Netzteils betrieben. Wird der Taster an der Front des Gehäuses betätigt, schaltet der Atmega das ATX-Netzteil ein( o. aus). Das ATX-Netzteil versorgt GLCD, Tastertur, Motor, ... mit Spannung.
STATUS: gebaut, getestet, Neuentwurf notwendig, Atmega32 durch Atmega169 ersetzen
Horizontaler Motor/Spiegel
Aus einem Drucker der Marke "Epson" 24000 U/min mit 7 Seitenflächen. 400*7 = 2800 Ablenkungen pro Sekunde.
Stecker
Pin Funktion
1 +24V
2 GND
3 Eingang: 5V TTL 0Khz = 0 U/s, 1 Khz = 400U/s (nichtlineare Kennkurve)
4 Ausgang: 7*U/sek ??? sehr instabil, besser nicht nutzen!
5 ??
STATUS: getestet
Laserstromversorgung
Diese Schaltung kann den Strom durch die Laserdiode bis 10 Mhz regulieren. Eingangsignal ist 5V TTL. Ausgabe ist rechtecktförmig. Einstellbar sind Offset und Maximalstrom. Auflösung: 12 bit Schwingkreis zur Laserausrichtung, Gesamt-optische-leistung muss kleiner 0,005 W sein.
astabilder Multivibrator: P = 1 Watt Pges <= 0,005 Watt Frequenz f = 50 Hz Pulsweitenmodulation T = 1 / f = 1 / 50 = 20 * 10^-3 s T2 = T - T1 T1 <= 5 mWatt / (1000 mW * f) = 5mWs / 50000 mW = 1 / 10000 s = 0,1 ms T2 = 20ms - 0,1 ms = 19,9 ms
astabiler multivibrator T = ln(2) * R * C T2 = 19,9 ms T1 = 0,1 ms setze C = 100n = 1 * 10^-7 R2 = T2 / (ln(2) * C) = 19,9* 10^-3/ 10^-7 *ln(2) = 28,7 *10^4 = 287k R1 = T1 / (ln(2) * C) = 0,1 * 10^-3/ 10^-7 *ln(2) = 0,144 * 10^4 = 14,4k
STATUS: Entwurf angefertigt
Bildverarbeitung
ARM7 mit 60 MIPS
STATUS: gebaut,getestet (Probleme beim flashen)
Anforderungen
Messung der Zeitspanne zwischen 2 Sync-pulsen
Mittelwert berechnung x (&Ausgabe)
Phasenschiebung p mit (p <= x)
Gammakorrektur g
bei 10Mpixel
STATUS:alternative erforderlich (Cortex-M3 ?)
Laserdiode
WARNUNG !
Dies ist ein Klasse 3 Laser ! Er verbrennt innerhalb von Sekunden Papier,Holz,Fleisch,... selbst in einigen Metern Entfernung !
Schutzbrille tragen
Nicht in den Strahl blicken !
Ich projektiere auf eine große Fläche > 1 qm, dadurch sind die Lichtpunkte an der Wand nicht so hell, dass man sich die Augen verbrennt !
Nie auf den Lichtpunkt blicken, wenn der Laser "steht". Verbrennungsgefahr !
Laserschutzbestimmungen einhalten !
1000mW (1W) Laserdiode 445nm Blau 5,6mm
TODO:
- Redoing the whole concept
- Design SMD boards
- Buy new motors, mirrors, laser,...
Links:
http://elm-chan.org/works/vlp/report_e.html